fast-fail机制,就是快速失败机制,它是java集合的一种错误检测机制,当多个线程对集合进行结构上的改变操作时,就有可能产生fast-fail机制(是有可能,而不是一定)
fast-fail示例
public class FailFastTest {
private static List<Integer> list = new ArrayList<>();
/**
* ThreadOne遍历集合
*/
private static class ThreadOne extends Thread {
@Override
public void run() {
Iterator<Integer> iterator = list.iterator();
while (iterator.hasNext()) {
int i = iterator.next();
System.out.println("ThreadOne遍历: " + i);
try {
sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
private static class ThreadTwo extends Thread {
@Override
public void run() {
int i = 0;
while (i < 6) {
System.out.println("ThreadTwo run: " + i);
if (i == 3) {
list.remove(i);
}
i++;
}
}
}
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
list.add(i);
}
new ThreadOne().start();
new ThreadTwo().start();
}
}
运行结果:
ThreadOne遍历: 0
ThreadTwo run: 0
ThreadTwo run: 1
ThreadTwo run: 2
ThreadTwo run: 3
ThreadTwo run: 4
ThreadTwo run: 5
Exception in thread "Thread-0" java.util.ConcurrentModificationException
at java.util.ArrayList$Itr.checkForComodification(ArrayList.java:901)
at java.util.ArrayList$Itr.next(ArrayList.java:851)
fast-fail产生原因
通过上面的示例,初步知道fast-fail产生的原因就在于程序对Collection进行迭代时,某个线程对Collection结构上做了修改,这是迭代器就会抛出ConcurrentModificationException异常,从而产生fast-fail。
我们来看看ArrayList中迭代器的源码:
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
从上面的源码中可以看出在next()、remove()方法中都调用的checkForComodification()方法,该方法主要就是校验modCount 和 expectedModCount是否相等,若不相等则抛出ConcurrentModificationException异常,从而产生fast-fail机制。那我们就有必要了解下为什么会判断modCount 和 expectedModCount是否相等,他们的值在什么时候发生了改变。
expectedModCount 是在Itr中定义的:int expectedModCount = ArrayList.this.modCount;所以他的值是不可能会修改的,所以会变的就是modCount。modCount是在AbstractList中定义的全局变量:
protected transient int modCount = 0;
那么它是什么时候发生改变的了,需要看ArrayList·源码:
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;//修改了modCount
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
public E remove(int index) {
rangeCheck(index);
modCount++;//修改了modCount
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
public void clear() {
modCount++;//修改了modCount
// clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
从上面的源码可以看出,Arraylist无论是add,remove,clear方法,只是要是涉及到集合元素个数的方法都会导致modCount改变,所以这里可以初步判断由于expectedModCount 得值与modCount的改变不同步,导致两者之间不等从而产生fast-fail机制。 假设有如下场景:
有两个线程(线程A,线程B),其中线程A负责遍历list、线程B修改list。线程A在遍历list过程的某个时候(此时expectedModCount = modCount=N),线程启动,同时线程B增加一个元素,这是modCount的值发生改变(modCount + 1 = N + 1)。线程A继续遍历执行next方法时,通告checkForComodification方法发现expectedModCount = N ,而modCount = N + 1,两者不等,这时就抛出ConcurrentModificationException 异常,从而产生fast-fail机制。
fast-fail解决办法
通过前面的源码分析,应该基本就了解了fast-fail机制,下面有两种解决方案:
-
在遍历过程中所有涉及到modCount改动的地方,全部加上synchronized或者直接用Collection.synchronizedList,这样虽然能解决,但是并不好,因为增删造成的同步锁可能会阻塞遍历操作
-
使用CopyOnWriteArrayList来替换Arraylist
-
尽量使用局部变量,这样根本上解决线程安全问题,同时在注意下同一线程时迭代器过程中不要对list做修改modcount操作即可
CopyOnWriteArrayList
CopyOnWriteArrayList是什么了?ArrayList的一个线程安全体,其中所有可变操作(add,set)都是通过对底层数组进行一次新的复制来实现的。 该类产生的开销比较大,但是在两种情况下,它非常适合使用。1:在不能或不想进行同步遍历,但又需要从并发线程中排除冲突时。2:当遍历操作的数量大大超过可变操作的数量时。遇到这两种情况使用CopyOnWriteArrayList来替代ArrayList再适合不过了。
那么为什么CopyOnWriterArrayList可以替代ArrayList呢?
1、CopyOnWriterArrayList的无论是从数据结构、定义都和ArrayList一样。它和ArrayList一样,同样是实现List接口,底层使用数组实现。在方法上也包含add、remove、clear、iterator等方法。
2、CopyOnWriterArrayList根本就不会产生ConcurrentModificationException异常,也就是它使用迭代器完全不会产生fast-fail机制。
static final class COWIterator<E> implements ListIterator<E> {
/** Snapshot of the array */
private final Object[] snapshot;
/** Index of element to be returned by subsequent call to next. */
private int cursor;
private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
snapshot = elements;
}
public boolean hasNext() {
return cursor < snapshot.length;
}
public boolean hasPrevious() {
return cursor > 0;
}
@SuppressWarnings("unchecked")
public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}
@SuppressWarnings("unchecked")
public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor-1;
}
/**
* Not supported. Always throws UnsupportedOperationException.
* @throws UnsupportedOperationException always; {@code remove}
* is not supported by this iterator.
*/
public void remove() {
throw new UnsupportedOperationException();
}
/**
* Not supported. Always throws UnsupportedOperationException.
* @throws UnsupportedOperationException always; {@code set}
* is not supported by this iterator.
*/
public void set(E e) {
throw new UnsupportedOperationException();
}
/**
* Not supported. Always throws UnsupportedOperationException.
* @throws UnsupportedOperationException always; {@code add}
* is not supported by this iterator.
*/
public void add(E e) {
throw new UnsupportedOperationException();
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
Object[] elements = snapshot;
final int size = elements.length;
for (int i = cursor; i < size; i++) {
@SuppressWarnings("unchecked") E e = (E) elements[i];
action.accept(e);
}
cursor = size;
}
}
CopyOnWriterArrayList的方法根本就没有像ArrayList中使用checkForComodification方法来判断expectedModCount 与 modCount 是否相等,我们以add操作来说明:
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);
newElements[len] = e;
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}
与ArrayList最大区别在于下面的代码:
Object[] arrayOfObject2 = Arrays.copyOf(arrayOfObject1, i + 1);
arrayOfObject2[i] = paramE;
setArray(arrayOfObject2);
就是这三句代码使得CopyOnWriterArrayList不会抛ConcurrentModificationException异常。他们所展现的魅力就在于copy原来的array,再在copy数组上进行add操作,这样做就完全不会影响COWIterator中的array了。
所以CopyOnWriterArrayList所代表的核心概念就是:任何对array在结构上有所改变的操作(add、remove、clear等),CopyOnWriterArrayList都会copy现有的数据,再在copy的数据上修改,这样就不会影响COWIterator中的数据了,修改完成之后改变原有数据的引用即可。同时这样造成的代价就是产生大量的对象,同时数组的copy也是相当有损耗的。
参考
以上,感谢阅读。End!!!